Ab Initio Calculations on CO₂ Binding to Carbonyl Groups

Michael R. Nelson and Raymond F. Borkman*

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

Received: April 8, 1998

Ab initio molecular orbital calculations were performed at the SCF and MP2 levels, using a 6-31G basis set, for complexes of CO₂ with carbonyl compounds. The specific interaction between CO₂ and the carbonyl oxygen can be described as a Lewis acid—base reaction. Two different geometries, one having $C_{2\nu}$ symmetry and the other having C_s symmetry, were studied. The C_s symmetry was found to yield stronger binding of the CO₂ complexes. The degeneracy of the ν_2 bending mode in free CO₂ was lifted when the CO₂ was bound. The calculated ν_2 splittings at the SCF level, using a 6-31G basis set, were comparable to literature values determined by IR spectroscopy of CO₂-impregnated polymers. When steric hindrance was present, the binding energy of CO₂ to carbonyls was reduced, resulting in lower ν_2 splittings. The interaction energy between benzene and CO₂ was determined to be much lower than that associated with a carbonyl oxygen and CO₂. The preference of CO₂ for the carbonyl group over the benzene ring, along with the role that steric hindrance plays, allows an understanding of the specific interactions of CO₂ with polymers.

Introduction

Gas permeability of polymers is not well understood at the molecular level but may partly depend on the propensity of gas molecules to weakly bind to certain sites along the polymer chain and occupy void spaces in amorphous regions. This would determine the solubility of the gas in the polymer.¹ It has been shown through the use of IR spectroscopy² that polymers possessing electron-donating functional groups display specific interactions with carbon dioxide. These interactions are most probably of Lewis acid—base nature.² There exists other spectroscopic evidence^{2–9} and ab initio calculations^{10–12} that show carbon dioxide acts as a Lewis acid in the presence of Bronsted and Lewis bases such as water, amines, amides, and basic polymers. Eckert et al.¹³ have reported equilibrium constants for the interactions of CO₂ with three Lewis bases: triethylamine, pyridine, and tributyl phosphate.

Poly(methyl methacrylate) (PMMA) is an example of a basic polymer containing a carbonyl oxygen. The CO₂ interacts with the carbonyl oxygen, possibly explaining the unusual swelling of PMMA^{14,15} by high-pressure CO₂. It has been shown¹⁶⁻¹⁸ that the antisymmetric stretching mode of the CO₂ does not provide evidence for specific interactions between CO₂ and PMMA. Eckert, Liotta, et al.² have shown experimentally that the v_2 degenerate bending mode of CO₂ provides evidence of specific interactions between CO2 and PMMA; they concluded that a Lewis acid-base interaction of CO2 with the carbonyl groups of various polymers would lift the degeneracy of the ν_2 bending mode of free CO₂. The $D_{\infty h}$ symmetry in free CO₂ no longer exists for bound CO₂ and a $C_{2\nu}$ or C_s symmetry CO₂carbonyl complex may result as shown in Figures 1 and 2. The out-of-plane mode (Figure 3) occurs at a higher frequency than the in-plane mode (Figure 4). Eckert, Liotta, et al.² were unable to deduce the exact geometry of the complex from the spectroscopic evidence.

Figure 1. CO₂ complex having $C_{2\nu}$ symmetry. The geometrical parameters r and a_1 are indicated where a_1 is the O_{carbonvl}-C–O angle.

Figure 2. CO_2 complex having C_s symmetry. The geometrical parameter a_2 is indicated. The angle a_2 is the $C_{carbonyl}$ – $O_{carbonyl}$ –C angle.

Figure 3. Out-of-plane bending for bound CO_2 is the higher frequency mode.

The current ab initio calculations investigate the ν_2 splitting of the CO₂ bending mode and the possible configurations shown in Figures 1 and 2. Five simple carbonyl-containing compounds were used as models in the current work: formaldehyde, acetic acid, acetaldehyde, acetone, and methyl acetate. In addition, ethyl benzoate and benzoic acid have been used as model compounds to mimic the possible interactions of CO₂ with poly-(ethylene terephthalate) (PET).

^{*} Author to whom correspondence should be addressed.

Figure 4. In-plane bending mode of bound CO₂ is the lower frequency mode.

 TABLE 1: Frequency Values for the Degenerate Bending

 Mode of CO2 at Different Levels of Theory Using Several

 Basis Sets

level	$\nu_2(cm^{-1})$	% difference
literature ²	667.0	
SCF/6-31G	656.6	-1.6
SCF/6-31G*	745.9	11.8
SCF/6-31+G	596.4	-10.6
SCF/6-31+G*	749.6	12.4
SCF/6-311G	648.6	-2.8
SCF/D95	716.5	7.4
SCF/D95+	675.1	1.2
MP2/6-31G	520.6	-21.9
MP2/6-31G*	636.1	-4.6
MP2/D95*	653.4	-2.0
MP2/D95+*	651.6	-2.3

Computational Methods

Complete geometry optimizations for CO₂-carbonyl complexes were performed using ab initio molecular orbital theory. Calculations were performed at the SCF and MP2 levels of theory. We have employed STO-3G and 6-31G basis sets on all CO₂ complexes assuming $C_{2\nu}$ and C_s symmetry according to Figures 1 and 2. The CO_2 axis was kept coplanar with the carbonyl group as indicated in the figures. Frequency calculations were performed on all complexes using the 6-31G basis set at the SCF and MP2 levels. All binding energies were determined by taking the difference between the optimized energies of separate CO2 plus model carbonyl and the optimized energies of the corresponding complex. Complete geometry optimizations and frequency calculations were performed on free CO₂ at the SCF and MP2 levels of theory using several different basis sets listed in Table 1. The GAUSSIAN 92 system of programs was used for all calculations.¹⁹

Results and Discussion

Table 1 shows the ν_2 bending mode of free CO₂ calculated at different levels of theory with several basis sets. It can be seen that the SCF/6-31G calculations provided good results for the ν_2 mode of free CO₂ in comparison to the literature value. Block et al.²⁰ performed ab initio calculations on free CO₂ at the MP2/D95** level and obtained a value of 655.7 cm⁻¹ for the ν_2 bending mode, slightly lower than the SCF/6-31G value obtained in this work. As a consequence of the results obtained in Table 1, the 6-31G basis set was used in subsequent calculations on the model compounds and their respective complexes with carbon dioxide.

Geometrical parameters defined in Figures 1 and 2 were determined at the SCF/6-31G level as given in Table 2. In all cases it can be seen that the CO₂ molecule is slightly bent when bound. This indicates a transfer of electron density to the carbon of the CO₂, acting as a Lewis acid. Mullikan population analyses confirm this transfer of charge (0.0041-0.0049) between the model compound and CO₂. Binding energies, ν_2

frequencies, and splittings at the MP2 level are given in Table 3. Both the SCF and MP2 levels of theory indicate that the C_s geometry is the lower energy configuration. The stronger binding in C_s symmetry resulted in a greater splitting of the ν_2 bending mode. One might think that because of steric hindrance the CO_2 axis would be 90° out of the plane giving the CO_2 complex C_1 symmetry. Jamroz et al.²¹ investigated this possible mode of binding to some carbonyl compounds and found that the C_1 and C_s symmetries resulted in similar binding energies at the SCF/3-21G* level of theory. Based on these results and C_1 calculations performed on formaldehyde, the C_1 configuration was not investigated further. At the SCF/3-21G* level, the v_2 bending mode splittings were found¹² to be between 8.2 and 13.6 cm⁻¹, too high in comparison to experiment. The splittings calculated at the SCF/6-31G level (Table 2) were comparable to the experimental splittings² obtained on carbonyl-containing polymers such as PMMA impregnated with CO₂ (Table 4). The MP2 results obtained in Table 3 also show comparable splittings of the ν_2 mode; however, the absolute values of the frequencies are too low. The splittings calculated for C_s symmetry are closer to experiment than the splittings calculated for $C_{2\nu}$ symmetry. This provides evidence for the C_s symmetry shown in Figure 2 as the favored geometry.

Previous ab initio calculations²¹ on CO₂ binding to model compounds indicate that steric repulsion can lead to weaker complexes. This can also be seen in our work with methyl acetate. Assuming C_s symmetry, attack from the ester side (Figure 5) resulted in a lower energy than attack from the methyl side (Figure 5), as seen in Tables 2 and 3. The angle, a₂, as shown in Figure 2 is affected to a greater extent (Table 2) for an ester-side attack at the lone pairs on the carbonyl oxygen due to the larger steric hindrance associated with this group. The lower binding due to the steric repulsion of the larger substituent resulted in a lower splitting of the v_2 bending mode as seen in Table 2.

The experimental results² shown in Table 4 include only one interactive site for the CO₂: namely, the carbonyl oxygen. Poly-(ethylene terephthalate) (PET) has two possible binding sites along the polymer backbone: the phenyl ring and the carbonyl oxygen. To test the possible role of binding at the phenyl ring, calculations were performed on complexes of benzene and carbon dioxide. Previous CNDO/2 calculations¹³ on a benzene– CO_2 complex indicated a minimum energy geometry (Figure 6) where the primary axis of the CO₂ molecule was lined up directly above a long C_2 axis of the benzene ring. SCF/6-31G calculations in our own work confirmed this geometry as being the minimum energy configuration of the benzene– CO_2 complex.

According to Nandel and Jain²¹ (and verified by the current work) the electron density values on individual atoms at the optimum geometry of the benzene– CO_2 complex are changed very little. There is almost no charge transfer from the benzene to the CO_2 . There is a small reorganization of electronic charges on the atoms, indicating that dipoles are induced in benzene by the field of the quadrupole moment of the CO_2 molecule.^{2,21} The resulting binding energy at the SCF/6-31G level was very small, 1.1 kcal/mol. This also resulted in a low ν_2 splitting of 1.3 cm⁻¹.

Experimentally,² the presence of several basic sites in PET made assignment of the observed splitting in the bending mode of CO_2 complicated. To better understand possible PET interactions with CO_2 , benzoic acid and ethyl benzoate were used as model compounds. Interaction with the phenyl ring showed minimal binding at the SCF/6-31G level. Bending

TABLE 2: Geometrical Parameters (r, a_1 , a_2), Binding Energies (BE), Bending Frequencies (v_2), and Splittings (Δv_2) for CO₂ Complexes with Model Carbonyl Compounds Using a 6-31G Basis Set at the SCF Level^{*a*}

compound	symmetry	r	a ₁	a ₂	BE	ν_2 spl	itting	$\Delta \nu_2$
acetone	C_{2v}	2.774	91.46	180.00	3.819	664.3	658.6	5.7
	Cs	2.745	91.47	132.82	4.376	664.0	656.2	7.8
acetaldehyde	C_{2v}	2.806	91.40	180.00	3.445	663.8	658.8	5.0
	C_s	2.760	91.34	130.77	4.996	663.4	657.2	6.2
formaldehyde	C_{2v}	2.841	91.36	180.00	3.062	663.2	658.8	4.4
	C_s	2.763	91.38	120.38	3.879	663.1	655.6	7.5
acetic acid	C_{2v}	2.771	91.41	180.00	3.773	663.9	659.1	4.8
	Cs	2.733	91.40	130.40	5.248	665.7	657.4	8.3
methyl acetate	C_{2v}	2.729	91.37	180.00	4.366	664.1	659.3	4.8
(ester side attack)	Cs	2.755	91.20	159.21	4.98	662.4	658.7	3.7
(methyl side attack)	Cs	2.733	91.41	130.42	5.204	665.9	656.7	9.2

^{*a*} The bond distance, r, is given in Å. Angles a_1 and a_2 are given in degrees and defined in Figures 1 and 2. All ν_2 values are given in cm⁻¹. Binding energies are given in kcal/mol.

TABLE 3: Binding Energies (BE), v_2 Frequencies, and Δv_2 Values of CO₂ Complexes with Carbonyl Compounds Using a 6-31G Basis Set at the MP2 Level

compound	symmetry	BE (kcal/mol)	ν_2 splittin	ng (cm ^{-1})	Δv_2
acetone	C_{2v}	2.512	525.5	519.4	6.1
	C_s	3.999	525.1	516.3	8.8
acetaldehyde	C_{2v}	2.302	525.2	519.8	5.4
	C_s	4.053	525.1	517.5	7.6
formaldehyde	C_{2v}	2.114	525.0	520.2	4.8
	C_s	3.406	523.6	516.6	7.0
acetic acid	C_{2v}	2.570	525.4	520.3	5.1
	C_s	4.245	525.0	517.5	7.5
methyl acetate	C_{2v}	3.148	525.3	521.1	4.2
(ester side attack)	C_s	3.976			
(methyl side attack)	C_s	4.148	524.8	517.3	7.5

 TABLE 4: Experimental Results² from IR Spectroscopy on Bending Vibrations of CO₂ Bound to Polymers

Figure 5. Possible directions of attack of CO_2 on methyl acetate. The diagram on the left (A) represents attack on the methyl side, while the diagram on the right (B) indicates attack from the ester side.

 (\mathbf{B})

Figure 6. Minimum energy geometry of the benzene $-CO_2$ complex determined using a 6-31G basis set at the SCF level.

mode splittings were calculated to be 4.2 cm⁻¹ for a C_s symmetry complex between CO₂ and ethyl benzoate as shown in Figure 7.

According to the present ab initio calculations, CO_2 binding in PET could be a result of binding at the phenyl ring or the

Figure 7. Possible binding geometry of CO₂ to PET polymer backbone.

carbonyl position. The carbonyl position is preferred over the phenyl ring. The calculated splittings of the ν_2 bending mode suggest that binding of CO₂ to PET occurs primarily at the carbonyl position of the PET backbone (Figure 7). Due to steric hindrance, the experimental splitting is only about 4 cm^{-1.2} Similar results were obtained when ab initio calculations were performed on methyl acetate, where it was found that (due to steric hindrance) the splitting of the ν_2 mode was lower for attack from the ester side than for the methyl side. It is possible the steric hindrance of the PET backbone resulted in a lower splitting of the bending mode of bound CO₂ relative to other carbonyl containing polymers.

Conclusions

Complexes between carbonyl-containing model compounds and CO₂ indicate that C_s symmetry (Figure 2) was preferred over $C_{2\nu}$ symmetry (Figure 1), resulting in a higher binding energy (Tables 2 and 3). The higher binding energy resulted in a greater splitting of the ν_2 degenerate bending mode of free CO₂. These greater splittings of the bending mode were comparable to experimental results of carbonyl-containing polymers. Mulliken populations indicated a Lewis acid—base interaction occurred.

The splitting observed in CO₂-impregnated PET is difficult to assign experimentally.² Ab initio calculations indicate that the carbonyl oxygen is the preferred binding site for CO₂ along the polymer backbone. Due to the steric hindrance associated with the polymer backbone, splittings of the ν_2 bending mode are lower than other carbonyl-containing polymers where steric hindrance is not as strong because the carbonyl group is not located in the polymer backbone as it is in the PET case. The relatively weak interactions between CO₂ and basic sites indicate that sorption of CO₂ in basic polymers may be enhanced.

References and Notes

(1) Erman, B.; Flory, P. J.; Hummel, J. P. *Macromolecules* **1980**, *22*, 1129–1136.

- (2) Kazarian, S. G.; Vincent, M. F.; Bright, F. V.; Liotta, C. L.; Eckert, C. A. J. Am. Chem. Soc. **1996**, 118, 1729.
 - (3) Peterson, K. I.; Klemperer, W. J. Chem. Phys. 1984, 80, 2439.

(4) Leopold, K. R.; Fraser, G. T.; Klemperer, W. J. Am. Chem. Soc. 1984, 106, 897.

- (5) Fredin, L.; Nelander, B.; Ribbegard, G. Chem. Scr. 1975, 7, 11.
- (6) Fredin, L.; Nelander, B. Chem. Phys. 1976, 15, 473.
- (7) Nxumalo, L. M.; Ford, T. A. J. Mol. Struct. 1994, 327, 145.
- (8) Dobrowolski, J. C.; Jamroz, M. H. J. Mol. Struct. 1992, 275, 211.
- (9) Reilly, J. T.; Bokis, C. P.; Donohue, M. D. Int. J. Thermophys. 1995, 16, 599.
 - (10) Kollman, P. A. J. Am. Chem. Soc. 1977, 99, 4875.
- (11) Nxumalo, L. M.; Ford, T. A.; Cox, A. J. J. Mol. Struct. 1994, 307, 153.
- (12) Jamroz, M. H.; Dobrowolski, J. C.; Bajdor, K.; Borowiak, M. A. J. Mol. Struct. **1995**, 349, 9.
- (13) Meredith, J. C.; Johnston, K. P.; Seminario, J. M.; Kazarian, S. G.; Eckert, C. A. J. Phys. Chem. **1996**, 100, 10837.
- (14) Goel, S. K.; Beckman, E. J. Polym. Eng. Sci. 1994, 34, 1137.

(15) Goel, S. K.; Beckman, E. J. Polym. Eng. Sci. 1994, 34, 1148.

- (16) Higuchi, A.; Nakagawa, T. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 149.
 - (17) Fried, J. R.; Li, W. J. Appl. Polym. Sci. 1990, 41, 1123.
- (18) Pyrkov, A. V.; Makarova, N. I.; Blednykh, E. I. Polym. Sci., Ser. B 1994, 36, 1005.

(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Bajer, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian 92/DFT, Revision G.4*; Gaussian, Inc., Pittsburgh, PA, 1993.

(20) Block, P. A.; Marshall, M. D.; Pedersen, L. G.; Miller, R. E. J. Chem. Phys. 1992, 96, 7321.

(21) Nandel, F. S.; Jain, D. V. S. Ind. J. Chem. 1984, 23A, 543.